TECHNICAL DATA SHEET

A CHEMICAL AND ABRASION RESISTANT COATING, SUITABLE FOR BOTH INDOOR AND OUTDOOR USE

DESCRIPTION

Clear Hard Coating is a UV cured coat that provides excellent protection against abrasion and chemicals to many different plastic substrates. It is based on a urethane acrylate monomer and provides excellent chemical resistance as well as protection against yellowing from the sun's UV rays.

BENEFITS

- Abrasion Resistance - Scuffs, chips and scratches are vastly reduced in both quantity and severity
- Optical Clarity - Sprayed on and UV cured; no visible flow lines, leaving a clear and transparent finish
- Chemical Resistance - Protection against strong chemicals
- Enhancement - A high gloss finish enhances coloured plastics and prints
- Weatherable - Providing protection against yellowing from the sun's UV rays
- Durability - Enhance the life of any plastic substrate

COATING ADHESION
using test method ASTM D3363 DN53 15

MATERIAL	ADHESION ON APPLICATION	ADHESION AFTER 72H WATER SOAK
Polycarbonate	100%	100%
PET	100%	100%
PVC	100%	100%

COATING HARDNESS

using test method ASTM D3363 and ASTM D1003

PENCIL HARDNESS using ASTM D3363

Polycarbonate - 5H

TABER ABRASION

Polycarbonate <3\%
Test protocols of ASTM D1003-500 cycles \& 500 gram weight using CS-10F wheels.
After 500 cycles, Clear Hard Coating gives a delta haze value of $<3 \%$
COATING ADHESION
using ISO test method 2812
This test was completed at 15 minute intervals for 8 hours and then left for a total of 24 hours.

CHEMICAL	RESULT	CHEMICAL	RESULT
Ketones	Passed	Aliphatics	Passed
Alcohol	Passed	Alkalis	Passed
Esters	Passed	Acid	Passed
Glycol ethers	Passed	Pesal	Passed
Aromatics	Passed		Passed

LIGHT TRANSMITTANCE - CLEAR ONLY

This is dependant on the substrate to which it is applied but the coating itself typically reduces the light transmission by less than 1%.

O2 AND WATER VAPOUR TRANSFER
 to ASTM D6701 in triplicate

Average water vapour transfer of a coated piece of Polycarbonate was reduced by $0.5 \mathrm{~g} / \mathrm{m}^{2}$ or 28%, against an uncoated piece of the same substrate. Actual WVTR at time of testing for coating only $1.6 \mathrm{~g} / \mathrm{m}^{2}$ day.

FIRE TESTED
to CS.25.853 (A) app.f part 1 (a) (i) (v)

